Tuscan Style Balcony- Designed From Antiquity - CBAL1000


Call for Price 1-800-292-0008


Get a Quote

Fine Art Hand Forged Iron Railing - Every Detail Hand Forged By Our Master Blacksmiths - H J Nick Certified Originals Are Heavy Detailed To World Fine Art Standards - (no castings or hollow faux metals) - All Heat Applied Iron Oxide Hand Patina Finished To World Class Antique Collectors Standards - (No Powder Coatings, No Spray On Faux Paint Jobs) - Guaranteed Forever - Order Any Size Or Style - Virtually Maintenance Free - Backed By Our Over Nine Decades Of Fine Craftsmanship Since 1913.

Designs By H J Nick and Scottsdale Art Factory Are All Handmade in our manufacturing plant based in Scottsdale Arizona has been designing and building some of the worlds finest custom railing for some of the world's finest interior designers with ordinary clients as well as most prominent and successful Persons,C.E.O.'s,leaders,royalty and celebrities for the last 97 years. Most of our clients want a design that has a BIG WOW factor as well as elegance. All want investment value wrought iron that makes a proper statement reflecting their personality or the personality of the environment for which it is intended.


We Hand Make All Of Our Metal Products In The Same Hand And Materials As It Has Been Tried And Tested For Hundreds Of Years - To Stand The Test Of Time

Solid Iron, Brass, Copper, And Genuine Precious Metals ( Gold, Silver) Is Available In All Styles

Investment Quality Equals An Appreciable Asset Furnishing, Destined For Antiquity.
<

Master Crafted In America Since 1913. Our prices are usually lower than lesser quality name brand mass production imports, this is because "We Are The Factory," so don't be fooled by our upscale appearance.

This Is Not A Foreign Made Mass Produced "Famous Brand Name" Fake Import Impostor.

We Custom Build Fine Art Lighting Residential And Commercial


Important Facts You Need To Understand About Wrought Iron this information will inform you and allow you to choose lighting that will appreciate in value.


Our Factory Designers Are Expert At Manufacturing Our Products And Are Not Salesman.

Our Factory Designers Are Instructed To Educate Allowing A Informed Decision

"When Only The Best Will Do"

Choose From Our Designs Or Use Your Design - We Build To Our Hand Made Standards


Purchase American Made - Invest In "Your" Future.

Investment Quality Equals An Appreciable Asset Furnishing, Destined For Antiquity.

We build only proud to own family heirloom furnishing, rich with family history and priceless heritage. This process begins with you and your family personalizing each piece with your own special design requests. H. J. Nick supervises the details and drafting process with his design team, and upon your approval, we then build your product. Once you receive your item, you can enjoy it secure in the knowledge it will increase in value and become a cherished family heirloom that is guaranteed to stand the test of time.


Historical Origin And Design Inspiration

A blacksmith is a person who creates objects from iron or steel by forging the metal; i.e., by using tools to hammer, bend, cut, and otherwise shape it in its non-liquid form. Usually the metal is heated until it glows red or orange as part of the forging process. Blacksmiths produce things like wrought iron gates, grills, railings, light fixtures, furniture, sculpture, tools, agricultural implements, decorative and religious items, cooking utensils, horse shoes and weapons.


A blacksmith's striker is an assistant (frequently an apprentice), whose job it is to swing a large sledge hammer in heavy forging operations, as directed by the blacksmith. In practice, the blacksmith will hold the hot iron at the anvil (with tongs) in one hand, and indicate where the iron is to be struck by tapping it with a small hammer held in the other hand: the striker then delivers a heavy blow with the sledge hammer where indicated.


When iron ore is smelted into usable metal, a certain amount of carbon is usually alloyed with the iron, (charcoal is almost pure carbon). The amount of carbon has extreme effects on the properties of the metal. If the carbon content is over 2%, the metal is called cast iron. Cast iron is so called because it has a relatively low melting point and is easily cast. It is quite brittle however, and therefore not used for blacksmithing. If the carbon content is between 0.25% and 2%, the resulting metal is tool steel, which can be heat treated as discussed above. When the carbon content is below 0.25%, the metal is either "wrought iron" or "mild steel." The terms are never interchangeable. In pre-industrial times, the material of choice for blacksmiths was wrought iron. This iron had a very low carbon content, and also included up to 5% of glassy slag. This slag content made the iron very tough, gave it considerable resistance to rusting, and allowed it to be more easily "forge welded," a process in which the blacksmith permanently joins two pieces of iron, or a piece of iron and a piece of steel, by heating them nearly to a white heat and hammering them together.


Hephaestus (Latin: Vulcan) was the blacksmith of the gods in Greek and Roman mythology. A supremely skilled artisan whose forge was a volcano, he constructed most of the weapons of the gods, and was himself the god of fire and metalworking.


Most Designs Used Today Were Conceived Hundreds Of Years Ago By Some Of The Worlds Most Famous Architects And Designers Working For The Aristocracies And The Well To Do Of Their Period.
Many of these architects and designers are as well known as Leonardo da Vinci (renaissance architecture) or Michelangelo,s (baroque architecture) as well as more recently William Morris, John Ruskin (founders of the Arts and Crafts furniture movement in circa 1800 England) Gustave Stickley (founder of the American Arts and Crafts movement in America circa 1900.) Frank Loyd Wright, Charles and Henry Greene to name a few.


Every Successful Creative Enterprise Is Always Built On A Foundation That Was Laid Down By Its Predecessors.
All creative people are dependent upon the groundwork laid down by those who came before them. H. J. Nick, artist and direct descendant of the Marbella brothers, and Scottsdale Art Factory have built on these foundations and have raised the bar of quality even higher. Thus setting a new standard and offering the finest one of a kind handmade furnishings found anywhere in the world in the 21st century.


Today Our Master Craftsman Build All Of Our Products Using The Identical Methods And Materials Of The Historical Period Of Each Furnishings Design Conception.


All 21st Century Designs Are Also Built By Our Master Craftsman Using These Classic Traditional Methods.


Whether We Build Products For Your Modern Dream Home Or Ancient Castle
every element Is always built to future collectable antiquity investment quality standards and will stand the test of time. Destined to become a part of your families appreciating financial net worth as well as a proud to own legacy heirloom.


We Are A "One Stop Shop".
Many of our clients commission furniture For every room, doors, gates, built-in cabinets, lighting and hardware for their entire project. For Example: We are capable of starting with your entrance door design style or personalized carving coat of arms, family crest or business logo and bring this design in a tastefull elegant way in to you interior and exterior lighting fixtures, entrance doors, Interior doors, cabinets, structural elements, entrance gates or furnishings for every room. Making your home a unique piece of your families tradition and legacy.


Many of the worlds finest builders, architects, interior designers, as well business and home owners choose Scottsdale Art Factory. Due to our large flexiable American work force and our ability to manufacture coinciding with construction deadlines.
Note: We do not import or out source allowing us total control of our supreme quality as well as your production requirements.

Product Details As Shown
See Original 110 Year Old Design Dining Table - Designs From The Historical Record - CTJ540 As Shown: French European Oak Monastery Table Mortise And Tenon Construction French 19th Cen Circa. 1899 Hand Carved Table Length: 120" Length: 30" Height: 48" Wide

Our Factory Designers Are Expert At Manufacturing Our Products And Are Not Salesman.

Our Factory Designers Are Instructed Educate To Allow A Informed Decision

It Is Our Experiance, Customers Informed And Educated Make SAF Their Choice

More Product Information

Every surface of this product is fine finished including the under sides and hidden areas. You may choose the natural color or from over 400 standard stain colors, or color match to any stain color from a sample you provide. Most of our finishes are water based and earth friendly. You may order any single color or texture finish at no extra charge.
Fine Finish Information: Important details about our finish process: patinas, sealants and wood finishes.

Hand Carving Information: Important details about the kind of carving you can expect when you order from Scottsdale Art Factory.


Colorized Carving. You can order any carving colorized. In order to achieve a colorized carving, multiple stain colors are used. The stains are hand applied and blended with an artistic eye to achieve an enhanced natural appearance.


Our Heritage: Marabella brothers come to America.


All Steel Is Coal Fired, Hammered By Master Blacksmiths The Old Fashioned Way And Patina Finished. At Scottsdale Art Factory, we take pride in our traditional, superior quality workmanship and craft our products from only the finest steel. Our master blacksmiths have been classically trained, and utilize old world techniques such as coal firing, anvil hammering and hand forging to create the finest handcrafted hardware available anywhere. All of our steel work is hand patina finished by heat applying iron oxides to achieve a natural patina finish that will stand the test of time.



Nothing is Drop Forged. We create works The Old Fashioned Way using solid hand forged steel, (drop forging is a poor quality, casted copy of a hand forged work of art). Nothing is wrought iron; wrought iron is simply a softer and less sturdy form of metal that cannot compare to stronger hand forged low carbon steel.


Master Blacksmithing: The kind of hand forged metal work you can expect when you order from Scottsdale Art Factory.


Patina Finish As Shown: Various Colors Of Hand Applyed Iron Oxide Patinas. Our beautiful patina finishes are hand applied using a special patented process where oxides are bonded into the metal at over 1000 degrees. This permanent finish beautifies with age. S.A.F. does not paint or faux finish any of our iron creations. Paint fades, chips and cracks over time and patinas last forever. No Drop Forged Casted Copies. No Paint Or Powder Coated Finishes. limited edition or original works. Every surface of this furnishing is finely finished including the undersides and hidden areas.


Each item is finished to be virtually maintenance free and to age with grace. All steel parts are hand patina finished the old fashioned way by iron oxide hand applied with high temperature heat. We never powder coat or faux paint our steel, it has been proven paint and powder coating methods do not hold up over time. You may choose from many natural iron oxide colors. Our patina finishes are water based and earth friendly. You may order any single color or texture finish at no extra charge.
Fine Finish Information: Important details about our finish process: patinas, sealant and wood finishes.


Order Hand Forged Matching Furnishings Of Any Design.



Our Guarantee: We Guarantee Each Item "Forever" " No Questions Asked, backed by over nine decades of fine craftsmanship.


Our Price Guarantee: Why you may purchase hand made custom at production prices.


Scottsdale Art Factory carries on the American Arts And Crafts Movement of the 21st century, in the same way William Morris and John Ruskin (founders of the Arts and Crafts furniture movement in circa 1800 England) inspired Gustave Stickley (founder of the American Arts and Crafts movement) in America circa 1900. Frank Loyd Wright, Charles and Henry Greene (inspired architects of the ultimate cottages such as the Gamble House in Pasadena California) are credited with raising quality standard to its highest level in their day. All of these great master craftsman also inspired the Marabella Brothers in the early 20th Century (founders of SAF circa 1913).


Every creative enterprise is always built on a foundation that was laid down by its predecessors. Creative people are also dependent on the groundwork laid down by those who came before them. H. J. Nick, artist and direct descendant of the Marbella brothers, and Scottsdale Art Factory have built on these foundations and have raised the bar of quality even higher. Thus setting a new standard and offering the finest one of a kind handmade furnishings found anywhere in the world in the 21st century.


Our Heritage: Marabella brothers come to America.


See Our Blog More about the history of Scottsdale Art Factory and the American furniture movement of the 21st century.


Metallurgy - The Historical Facts


Wrought Iron Iron alloy phases v eFerrite (α-iron, δ-iron; soft) Austenite (γ-iron; harder) Spheroidite Pearlite (88% ferrite, 12% cementite) Bainite Martensite Ledeburite (ferrite-cementite eutectic, 4.3% carbon) Cementite (iron carbide, Fe3C; hardest)


Steel Classes Carbon steel (≤2.1% carbon; low alloy) Stainless steel (+chromium) Maraging steel (+nickel) Alloy steel (hard) Tool steel (harder)


Wrought iron is commercially pure iron. In contrast to steel, it has a very low carbon content. It is a fibrous material due to the slag inclusions (a normal constituent). This is also what gives it a "grain" resembling wood, which is visible when it is etched or bent to the point of failure. Wrought iron is tough, malleable, ductile and easily welded.


Examples of items that used to be produced from wrought iron include: rivets, chains, railway couplings, water and steam pipes, raw material for manufacturing of steel, nuts, bolts, horseshoes, handrails, straps for timber roof trusses, boiler tubes, and fine art ornamental ironwork.


Every Thing That Appears To Be Genuine Wrought Iron - May Not Be Truly Wrought Iron

Wrought iron is no longer produced on a commercial scale. Many products described as wrought iron, such as guard rails, are made of mild steel. They retain that description because they were formerly made of wrought iron or have the appearance of wrought iron. True wrought iron is occasionally required for the authentic conservation of historic structures.


Wrought iron is so named because it is worked from a bloom of porous iron mixed with slag and other impurities. The word "wrought" is an archaic past tense form of the verb to work. As irregular past-tense forms in English have historically been phased out over long periods of time, wrought became worked. Wrought iron literally means worked iron. Another theory is that "wrought" is the past tense of "wring".


Wrought iron is a general term for the commodity, but is also used more specifically for finished iron goods, as manufactured by a blacksmith or other smith. It was used in this narrower sense in British Customs records, such manufactured iron being subject to a higher rate of duty than what might be called "unwrought" iron.


In the 17th, 18th and 19th centuries, wrought iron went by a wide variety of terms according to its form, origin, or quality.


Bar iron - iron in bars, which are the usual product of the finery forge, but not necessarily made by that process. These might be square or flat, and flat bars might be narrow or broad.


Rod iron - cut from flat bar iron in a slitting mill to provide the raw material for nails.


Hoop iron - suitable for the hoops of barrels, apparently made by passing rod iron through flat rolls.


Plate iron - sheets of iron suitable for use as boiler plate.


Black-plate - sheets of iron, perhaps thinner than plate iron, from the black rolling stage of tinplate production.


Voyage iron - narrow flat bar iron, made or cut into bars of a particular weight, a commodity for sale in Africa for the Atlantic slave trade. The number of bars per ton gradually increased from 70 per ton in the 1660s to 75"80 per ton in 1685 and "near 92 to the ton" in 1731


Oregrounds iron - a particularly pure grade of bar iron made ultimately from iron ore from the Dannemora mine in Sweden. Its most important use was as the raw material for the cementation process of steel-making.


Danks iron - originally iron imported to Great Britain from Danzig (now Gdansk), but in the 18th century more probably the kind of iron (from eastern Sweden) that once came from Danzig.


Forest iron - iron from the Forest of Dean, where haematite ore enabled tough iron to be produced.


Lukes iron - iron imported from Liage, whose Dutch name is "Luik."


Ames iron or amys iron - another variety of iron imported to England from northern Europe. Its origin has been suggested to be Amiens, but it seems to have been imported from Flanders in the 15th century and Holland later, suggesting an origin in the Rhine valley. Its origins remain controversial


Botolf iron or Boutall iron - from Butow (Pommerania) or Beuthen (Silesia).


Sable iron (or Old Sable) - iron bearing the mark (a sable) of the Demidov family of Russian iron-masters, one of the better brands of Russian iron.


Tough iron - also spelt "tuf".


Blend iron- made using a mixture of different types of pig iron.


Best iron - in the 19th century, iron that had gone through several stages of piling and rolling, might reach the stage of being best iron.


Marked Bar iron- iron made by members of the Marked Bar Association and marked with the maker's brand mark as a sign of its quality.


Defective quality Iron is redshort if it contains sulfur in excess quantity. It has sufficient tenacity when cold, but cracks when bent or finished at a red heat. It is therefore useless for welding or forging.


Iron is coldshort (or "coldshear" or "colshire" or "bloodshot"), if it contains phosphorus in excess quantity. It is very brittle when it is cold. It cracks if bent. It may, however, be worked at high temperature. Historically, coldshort iron was considered good enough for nails. Nevertheless, phosphorus is not necessarily detrimental to iron:


Ancient Indian smiths did not add lime to their furnaces; the absence of CaO in the slag, and the deliberate use of wood with high phosphorus content during the smelting, induces a higher P content (> 0.1%, average 0.25%) than in modern iron. There is more phosphorus as solid solution throughout the metal than in the slags (one analysis gives 0.10% in the slags for 18% in the iron itself, for a total P content of 0.28% in the metal). This high P content and particular repartition are essential factors in the formation of a passive protective film of "misawite" (d-FeOOH), an amorphous iron oxyhydroxide that forms a barrier by adhering next to the interface between metal and rust.


1600 Year - Old Rust - Proof Pillar - Is Proof Pure Wrought Iron Will Stand The Test of Time

From this technology recently rediscovered by metallurgists at IIT Kanpur through the study of the Iron Pillar of Delhi, rust-proof iron is at the last stages of being commercialized. This 1600 years-old rust-proof pillar is also of a remarkable strength, having withstood the impact of a cannon ball in the 18th century. Copper has a similar effect as phosphate regarding the formation of a passive protection film. Furthermore, the presence of phosphorus (without carbon) produces a ductile iron suitable for wire drawing, for piano wire.


The puddling process of smelting iron ore to make wrought iron from pig iron, the right half of the illustration displays men working a blast furnace, Tiangong Kaiwu encyclopedia published in 1637, written by Song Yingxing (1587"1666).


Wrought iron has been used for many centuries, and is the "iron" that is referred to throughout western history. The other form of iron, cast iron, was not introduced into Western Europe until the 15th century; even then, due to its brittleness, it could only be used for a limited number of purposes. Throughout much of the Middle Ages iron was produced by the direct reduction of ore in manually operated bloomeries, although waterpower had begun to be employed by 1104.


The raw material produced by all indirect processes is pig iron. It has a high carbon content and as a consequence it is brittle and could not be used to make hardware. The osmond process was the first of the indirect processes, developed by 1203, but bloomery production continued in many places. The process depended on the development of the blast furnace, of which medieval examples have been discovered at Lapphyttan, Sweden and in Germany.


The bloomery and osmond processes were gradually replaced from the 15th century by finery processes, of which there were two versions, the German and Walloon. They were in turn replaced from the late 18th century by puddling, with certain variants such as the Swedish Lancashire Process. These too are now obsolete, and wrought iron is no longer manufactured commercially, except one brand "Pure Iron" which is made for artist blacksmiths and restorations of older ironworks.


Bloomery process Wrought iron was originally produced by a variety of smelting processes, all described today as bloomeries. Different forms of bloomery were used at different places and times. The bloomery was charged with charcoal and iron ore and then lit. Air was blown in through a tuyere to heat the bloomery to a temperature somewhat below the melting point of iron. In the course of the smelt, slag would melt and run out, and carbon monoxide from the charcoal would reduce the ore to iron, which formed a spongy mass. The iron remained in the solid state. If the bloomery was allowed to become hot enough to melt the iron, carbon would dissolve into it and form pig or cast iron, but that was not the intention.


After smelting was complete, the bloom was removed, and the process could then be started again. It was thus a batch process, rather than a continuous one. The spongy mass contained iron and also silicate (slag) from the ore; this was iron bloom from which the technique got its name. The bloom had to be forged mechanically to consolidate it and shape it into a bar, expelling slag in the process.


During the Middle Ages, water-power was applied to the process, probably initially for powering bellows, and only later to hammers for forging the blooms. However, while it is certain that water-power was used, the details of this remain uncertain. This was the culmination of the direct process of ironmaking. It survived in Spain and southern France as Catalan Forges to the mid 19th century, in Austria as the stuckofen to 1775, and near Garstang in England until about 1770; it was still in use with hot blast in New York State in the 1880s.


Osmond process Osmond iron consisted of balls of wrought iron, produced by melting pig iron and catching the droplets on a staff, which was spun in front of a blast of air so as to expose as much of it as possible to the air and oxidise its carbon content. The resultant ball was often forged into bar iron in a hammer mill.


Finery forge In the 15th century, the blast furnace spread into what is now Belgium and was improved. From there, it spread via the Pays de Bray on the boundary of Normandy and then to the Weald in England. With it, the finery forge spread. These remelted the pig iron and (in effect) burnt out the carbon, producing a bloom, which was then forged into a bar iron. If rod iron was required, a slitting mill was used.


The finery process existed in two slightly different forms. In Great Britain, France, and parts of Sweden, only the Walloon process was used. This employed two different hearths, a finery hearth for fining the iron and a chafery hearth for reheating it in the course of drawing the bloom out into a bar. The finery always burnt charcoal, but the chafery could be fired with mineral coal, since its impurities would not harm the iron when it was in the solid state. On the other hand, the German process, used in Germany, Russia, and most of Sweden used a single hearth for all stages.


The introduction of coke for use in the blast furnace by Abraham Darby in 1709 (or perhaps others a littler earlier) initially had little effect on wrought iron production. Only in the 1750s was coke pig iron used on any significant scale as the feedstock of finery forges. However, charcoal continued to be the fuel for the finery.


Potting and stamping from the late 1750s, ironmasters began to develop processes for making bar iron without charcoal. There were a number of patented processes for this, which are referred to today as potting and stamping. The earliest were developed by John Wood of Wednesbury and his brother Charles Wood of Low Mill at Egremont, patented in 1763. Another was developed for the Coalbrookdale Company by the Cranage brothers. Another important one was that of John Wright and Joseph Jesson of West Bromwich.


Schematic drawing of a puddling furnace Puddling (metallurgy)A number of processes for making wrought iron without charcoal were devised as the Industrial Revolution began during the latter half of the 18th century. The most successful of these was puddling, using a puddling furnace (a variety of the reverberatory furnace). This was invented by Henry Cort in 1784. It was later improved by others including Joseph Hall. In this type of furnace, the metal does not come into contact with the fuel, and so is not contaminated by impurities in it. The flame from the fire is reverberated or sent back down onto the metal on the fire bridge of the furnace.


Unless the raw material used is white cast iron, the pig iron or other raw material first had to be refined into refined iron or finers metal. This would be done in a refinery where raw coal is used to remove silicon and convert carbon from a graphitic form to a combined form. This metal was placed into the hearth of the puddling furnace where it was melted. The hearth was lined with oxidizing agents such as haematite and iron oxide. This mixture is subjected to a strong current of air and stirred with long bars, called puddling bars or rabbles through working doors. The air, stirring, and "boiling" action of the metal help the oxidizing agents to oxidize the impurities and carbon out of the pig iron to their maximum capability. As the impurities oxidize, the retaining material solidifies into spongy wrought iron balls, called puddle balls.


Shingling (metallurgy) There is still some slag left in the puddle balls so while they are still hot they must be shingled to remove the remaining slag and cinder. It may be achieved by forging the balls under a power hammer or by squeezing the bloom in a machine. The material obtained at the end of shingling is known as bloom and it is still red-hot.[25] The blooms are not useful in this form so they must be rolled into a final product.


Sometimes European ironworks would skip this step completely and roll the puddle balls. The only drawback to this is that the edges of the rough bars are not as well compressed. When the rough bar is reheated, the edges may separate and be lost into the furnace.


Rolling mill The bloom is passed through grooved rollers and flat bars were produced. These bars of wrought iron were of poor quality, called muck bars or puddle bars. To improve the quality of wrought iron, these bars were cut up, piled and tied together by wires, a process known as faggoting or piling. They were then reheated and rolled again in merchant rolls. This process may be repeated several times to get wrought iron of desired quality. Wrought iron that has been rolled multiple times is called merchant bar or merchant iron


Lancashire process The advantage of puddling was that it used coal, not charcoal as fuel. However this was little advantage in Sweden, which lacks coal. Gustaf Ekman observed charcoal fineries at Ulverstone, which were quite different from any in Sweden. After his return to Sweden in the 1830s, he experimented and developed a process similar to puddling but using forewood and charcoal, which was widely adopted in the Bergslagen in the following decades.


The Aston process In 1925, James Aston of the United States developed a process for manufacturing wrought iron quickly and economically. It involves taking molten steel from a Bessemer converter and pouring it into cooler liquid slag. The temperature of the steel is about 1500 C and the liquid slag is maintained at approximately 1200 C. The molten steel contains a large amount of dissolved gases so when the liquid steel hits the cooler surfaces of the liquid slag the gases are liberated. The molten steel then freezes to yield a spongy mass having a temperature of about 1370 C. This spongy mass must then be finished by being shingled and rolled as described under puddling (above). Three to four tons can be converted per batch with this method.


Wrought iron is no longer commercially produced. The last wrought iron facility shut down in 1969. In the 1960s the price of steel production was dropping due to recycling and even using the Aston process wrought iron production was a labor intensive process. It has been estimated that the production of wrought iron costs approximately twice as much as the production of low carbon steel.


Properties The microstructure of wrought iron, showing dark slag inclusions in ferrite (iron) The slag inclusions in wrought iron give it properties not found in other forms of ferrous metal. There are approximately 250,000 inclusions per square inch. A fresh fracture shows a clear bluish color with a high silky luster and fibrous appearance.


Wrought iron lacks the carbon content necessary for hardening through heat treatment, but in areas where steel was uncommon or unknown, tools were sometimes cold-worked (hence cold iron) in order to harden them. An advantage of its low carbon content is its excellent weldability. Furthermore, sheet wrought iron cannot bend as much as steel sheet metal (when cold worked).


Wrought iron can be cast, however there is no engineering advantage as compared to cast iron; cast iron is much easier to produce and thus cheaper, so it is exclusively chosen over wrought iron.


Due to the variations in iron ore origin and iron manufacture, wrought iron can be inferior or superior in corrosion resistance compared to other iron alloys. There are many mechanisms behind this corrosion resistance. Chilton and Evans found that nickel enrichment bands reduce corrosion. They also found that in puddled and forged and piled the working over of the iron spread out copper, nickel and tin impurities, which produce electrochemical conditions that slow down corrosion.


The slag inclusions have been shown to disperse corrosion in to an even film to resist pitting. Another study has shown that slag inclusions are pathways to corrosion. Other studies show that sulfur impurities in the wrought iron decrease corrosion resistance, but phosphorus increase corrosion resistance. Environments with a high concentration of chlorine ions also decreases wrought iron's corrosion resistance.


Wrought iron has a rough surface so it can hold platings and coatings better. For instance, a galvanic zinc finish is approximately 25"40% thicker than the same finish on steel. In Table 1, the chemical composition of wrought iron is compared to that of pig iron and carbon steel. Although it appears that wrought iron and plain carbon steel have similar chemical compositions, this is deceiving. Most of the manganese, sulfur, phosphorus, and silicon are incorporated into the slag fibers present in the wrought iron, so wrought iron really is purer than plain carbon steel.


Table 1: Chemical composition comparison of pig iron, plain carbon steel, and wrought iron[25] Material Iron Carbon Manganese Sulfur Phosphorus Silicon Pig iron 91"94 3.5"4.5 0.5"2.5 0.018"0.1 0.03"0.1 0.25"3.5 Carbon steel 98.1"99.5 0.07"1.3 0.3"1.0 0.02"0.06 0.002"0.1 0.005"0.5 Wrought iron 99"99.8 0.05"0.25 0.01"0.1 0.02"0.1 0.05"0.2 0.02"0.2 All units are percent weight


Table 2: Properties of wrought iron Property Value Ultimate tensile strength [psi (MPa)][40] 34,000"54,000 (234"372) Ultimate compression strength [psi (MPa)][40] 34,000"54,000 (234"372) Ultimate shear strength [psi (MPa)][40] 28,000"45,000 (193"310) Yield point [psi (MPa)][40] 23,000"32,000 (159"221) Modulus of elasticity (in tension) [psi (MPa)][40] 28,000,000 (193,100) Melting point [C)][41] 2,800 (1,540) Specific gravity 7.6"7.9 7.5"7.8 Amongst its other properties, wrought iron becomes soft at red heat, and can be easily forged and forge welded. It can be used to form temporary magnets, but cannot be magnetized permanently, and is ductile, malleable and tough.


Understanding True Quality Makes All The Difference

When you purchase investment quality furnishings, doors, gates, cabinets, lighting and hardware they will appreciate and keep up with inflation or exceed most other investments. For this reason, becoming wealthy has very little to do with a higher education or having a lot of extra money. It is truly making wise decisions and a state of mind that allows for you to pay once for a good value and continue to grow wealth while enjoying living in your investment. Not to mention this type of investing has many other benefits, such as priceless family heirlooms that have meaning and the ability to pass on your legacy to future generations.


Over Ninety Five Percent Of Furnishings Offered In America Today,
" No Matter The Brand Name"
Are Foreign Made For Profit Only






The "Brand Name" Rip Off Of The American Consumer

Why Would Any One Pay 300% - 800% Mark Up For A Cheap Inferior Third World Made Furnishing? - When You Can Purchase Top American Made Quality For Less






It's A Simple Fact


When You Purchase A Third World Product You Are Working Against The American Economy.
You are thus working against yourself and your future employment or the employment of the customers your business depends upon. In addition, your choice works against employing American workers making quality American products as well as allowing these old brand name American profiteers to take advantage of the American consumer using these slight of hand tactics.






This Is Not Sour Grapes - And We Challenge Any Expert To Demonstrate Different
It is the facts of the furniture and door industry as a whole for past eight to ten years as we are living it. Simply turn on any news channel and see the results in action.


In Nine Decades Scottsdale Art Factory Has Never Changed Its Policy of "Made In America By American Workers Using American Made Materials".

We Will Never Sell Our Corporate Soul," Family Name" For A Fast Buck, And We Make No Apologies For Being Proud Flag Waving American Manufacturers.

Scottsdale Art Factory Is The Right Choice.

Custom Hand Crafted Doors and Furniture information request